Oak Ridge National Lab uses super computers to simulate GM of lignin


In Tennessee, turning trees, grass, and other biomass into fuel for automobiles and airplanes is a costly and complex process. Biofuel researchers are working to change that, envisioning a future where cellulosic ethanol, an alcohol derived from plant sugars, is as common and affordable at the gas station as gasoline.

The key to making this vision a reality? Unraveling the tightly wound network of molecules—cellulose, hemicellulose, and lignin—that make up the cell wall of plants for easier biofuel processing.

Using high-performance computing, a group of researchers at the US Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL) provided insight into how this might be accomplished, simulating a well-established genetic modification to the lignin of an aspen tree in atomic-level detail. The team’s conclusion—that hydrophobic, or water repelling, lignin binds less with hydrophilic, or water attracting, hemicellulose—points researchers toward a promising way to engineer better plants for biofuel. Their results were published in the November 2014 edition of Physical Chemistry Chemical Physics.

This entry was posted in Biodiesel Report. Bookmark the permalink.